Changes of flax dLUTE marker profile in nutrition deprivation
DOI:
https://doi.org/10.59463/xtvhpn19Abstract
DNA marker analyses are still relevant and indispensable in the current era of targeted applications of plant genetic technologies. The practical application of DNA marker techniques is mainly in the field of processing and development of genetic resources of individual plant species and in the field of application of markers per se. In this study, the polymorphism of the insertion element dLUTE of flax was analyzed under conditions of nutritional deprivation in in vitro conditions that was compared to fingerprint profiles from field conditions of growth. dLUTE transposon is represented in numerous copies in the flax genome and is active under the abiotic stress. A total of six varieties were analysed – Albidum, Svaloef, Flanders, La Plata 1938, Rembrant and Gisa. The obtained results of the analyses showed the variability of amplicon profiles in the different flax varieties also in relation to the tested abiotic stress conditions. Rembrant was evaluated as the variety with the most stable profile.
References
Bassett, C.M., Rodriguez-Leyva, D. & Pierce, G.N. (2009), Experimental and clinical research findings on the cardiovascular benefits of consuming flaxseed. Applied Physiology and Nutritional Metabolism, 34, pp. 965-974.
Ragupathy, R., Rathinavelu, R. & Cloutier, S. (2011), Physical mapping and BAC-end sequence analysis provide initial insights into the flax (Linum usitatissimum L.) genome. BMC Genomics,12, 217.
Oh, T.J., Gorman, M. & Cullis, C.A. (2000), RFLP and RAPD mapping in flax (Linum sitatissimum). Theoretical and Applied Genetics, 101, pp. 590-593.
Chen, Y., Hausner, G., Kenaschuk, E., Procunier, D., Dribnenki, P. & Penner, G. (1998), Identification of microspore-derived plants in another culture of flax (Linum usitatissimum L.) using molecular markers. Plant Cell Reports, 18, pp. 44-48.
Diederichsen, A. & Fu, Y.B. (2008), Flax genetic diversity as the raw material for future success. International Conference on Flax and Other Bast Plants, ISBN 978-0-9809664-0-4, pp. 270
Rajwade, A.V., Arora, R.S., Kadoo, N.Y., Harsulkar, A.M., Ghorpade, P.B. & Guptam, V.S. (2010), Relatedness of Indian flax genotypes (Linum usitatissimum L.): an inter-simple sequence repeat (ISSR) primer assay. Molecular Biotechnology, 45, pp.161-170.
Uysal, H., Fu, I.B., Kurt, O., Peterson, G.W., Diederichsen, A. & Kusters, P. (2010), Genetic diversity of cultivated flax (Linum usitatissimum L.) and its wild progenitor pale flax (Linum bienne Mill.) as revealed by ISSR markers. Genetic Resources and Crop Evolution, 57, pp. 1109-1119.
Cloutier, S., Niu, Z., Datla, R. & Duguid, S. (2009), Development and analysis of EST-SSRs for flax (Linum usitatissimum L.). Theoretical and Applied Genetics, 119, pp. 53-63.
Žiarovská, J., Ražná, K., Senková, S., Štefúnová, V. & Bežo, M. (2012), Variability of Linum usitatissimum L. based on molecular markers. ARPN Journal of Agricultural and Biological Science, 7, pp. 50-58.
Smýkal, P., Bačová-Kerteszová, N., Kalendar, R., Corander, J., Schulman, A.H. & Pavelek, M. (2011), Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers. Theoretical and Applied Genetics, 122, pp. 1385-1397.
Allaby, R.G., Peterson, G.W., Merriwether, D.A. & Fu, Y.B. (2005), Evidence of the domestication history of flax (Linum usitatissimum L.) from genetic diversity of the sad2 locus. Theoretical and Applied Genetics, 112, pp. 58-65.
Bennetzen, J. L. (2000), Transposable element contributions to plant gene and genome evolution. Plant Molecular Biology, 42, pp. 251–269.
Feschotte, C. & Pritham, E. J. (2007), DNA transposons and the evolution of eukaryotic genomes. Annual Review of Genetics, 41, pp. 331–368.
Feschotte, C., Jiang, N., & Wessler, S. R. (2002), Plant transposable elements: where genetics meets genomics. Nature Reviews Genetics, 3, pp. 329–341.
Kalendar, R., Flavell, A. J., Ellis, T. H. N., Sjakste, T., Moisy, C. & Schulman, A. H. (2011), Analysis of plant diversity with retrotransposon-based molecular markers. Heredity, 106, pp. 520–530.
Pritham, E.J. (2009), Transposable elements and factors influencing their success in eukaryotes. Journal of Heredity, 100, pp. 648-655.
Luck, J.E., Lawrence, G.J., Finnegan, E.J., Jones, D.A. & Ellis, J.G. (1998), A flax transposon identified in two spontaneous mutant alleles of the L6 rust resistance gene. Plant Journal, 16, pp. 365-369.
Cullis, CH.A. (2005), Mechanisms and control of rapid genomic changes in flax. Annals of Botany, 95, 201-206.
Finnegan, E.J., Lawrence, G.J., Dennis, E.S. & Ellis, J.G. (1993), Behavior of modified Ac elements in flax callus and regenerated plants. Plant Molecular Biology, 22, pp. 625–633.
Lawrence, G., Finnegan, J. & Ellis, J. (1993), Instability of the L6 gene for rust resistance in flax is correlated with the presence of a linked Ac element. Plant Journal, 4, pp. 659-669.
Lawrence, G.J., Finnegan, E.J., Ayliffe, M.A. & Ellis, J.G. (1995), The L6 gene for flax rust resistance is related to the arabidopsis bacterial resistance gene rps2 and the tobacco viral resistance gene N. Plant Cell, 7, pp. 1195–1206.
Murashige, T. & Skoog, F. (1962), A revised medium for rapid growth and bioassays with tabacco tissue cultures. Physiologie Plantarum, 15, pp. 473-479.
Rogers, S.O. & Bendich, A.J. (1994), Extraction of total cellular DNA from plants, algae and fungi. Plant Molecular Biology Manual D1. (Eds.): S.B. Gelvin and R.A. Schilperoort, Ordrecht, The Netherlands: Kluwer Academics Publishers, 1994, p. D1/1 – D1/8. ISBN 0-7923-2858-2
Mansour, A. (2007), Epigenetic activation of genomic retrotransposons. Journal of Cell and Molecular Biology, 6, pp. 99-107.
Durrant, A. (1962), The environmental induction of heritable change in Linum. Heredity, 17, 1962, pp. 27-61.
Žiarovská, J., Bežo, M., Lancíková, V. & Ražná, K. (2015), In silico based development of dLUTE length polymorphism marker for common flax germplasm evaluation. Pakistan Journal of Botany, 47, pp. 2277–2282.
Lancíková, V. & Žiarovská, J. (2020), Inter-retrotransposon amplified polymorphism markers revealed long terminal repeat retrotransposon insertion polymorphism in flax cultivated on the experimental fields around Chernobyl. Journal of Environmental Science and Health Part A, 55, p. 1760016.
Schulman, A.H., A.J. Flavell & T.H. Ellis. (2004), The application of LTR retrotransposons as molecular markers in plants. Methods in Molecular Biology, 260, pp. 145-173.
McClintock, B. (1950), The origin and behavior of mutable loci in maize. Proceedings of the National Academy of Sciences, 36, pp. 344–355.
McClintock, B. (1984), Significance of Response of the Genome to Challange. Science, 226, pp. 792-801.
Capy, P., Casperi, G., Biemont, C. & Bazin, C. (2000), Stress and transposable elements: co-evolution or useful parasites? Heredity, 85, pp. 101–106.
Miller, W.J. & Capy, P. (2004), Mobile genetic elements as natural tools for genome evolution. Methods in Molecular Biology, 260, pp. 1–20.
Hashida, S.N., Uchiyama, T., Martin, C., Kishima, Y., Sano, Y. & Mikami, T. (2006), The temperature-dependent change in methylation of the Antirrhinum transposon Tam3 is controlled by the activity of its transposase. Plant Cell, 18, pp.104–118.
Fujimo, K., Hashida, S.N., Ogawa, T., Natsume, T., Uchiyama, T., Mikami, T. & Kishima, Y. (2011), Temperature controls nuclear import of Tam3 transposase in Antirrhinum. Plant Journal, 65, pp. 146–155.
Mhiri, C., Morel, J.B., Vernhettes, S., Casacuberta, J.M., Lucas, H. & Grandbastien, M.A. (1997), The promoter of the tobacco Tnt1 retrotransposon is induced by wounding and by abiotic stress. Plant Molecular Biology, 33, pp. 257–266.
Melayah, D., Bonnivard, E., Chalhoub, B., Audeon, C. & Grandbastien, M.A. (2001), The mobility of the tobacco Tnt1 retrotransposon correlates with its transcriptional activation by fungal factors. Plant Journal, 28, pp. 159-168.
Grandbastien, M.A., Audeon, C., Bonnivard, E., Casacuberta, J.M., Chalhoub, B., Costa, A.P., Le, Q.H., Melayah, D., Petit, M., Poncet, C., Tam, S.M., Van Sluys, M.A. & Mhiri, C. (2005), Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae. Cytogenetic and Genome Research, 110, pp. 229-241.
Kimura, Y., Tosa, Y., Shimada, S., Sogo, R., Kusaba, M., Sunaga, T., Betsuyaku, S., Eto, Y., Nakayashiki, H., & Mayama, S. (2001), OARE-1, a Ty1-copia Retrotransposon in Oat Activated by Abiotic and Biotic Stresses. Plant Cell Physiology, 42, pp. 1345-1354.
Maumus, F., Allen, A.E., Mhiri, C., Hu, H., Jabbari, K., Vardi, A., Grandbastien, M.A. & Bowler, CH. (2009), Potential impact of stress activated retrotransposons on genome evolution in a marine diatom. BMC Genomics, 10, p. 624.
Oliver, M.J., Schofield, O. & Bidle, K. (2010), Density dependent expression of a diatom retrotransposon. Marine Genomics, 3, pp. 145–150.
Poczai, P., Varga, I., Laos, M., Cseh, A., Bell, N., Valkonen, J. & Hyvonen, J. (2013), Advances in plant gene-targeted and functional markers: a review. Plant Methods, 9, pp. 1-31.
González, G.L. & K.M. Deyholos. (2012), Identification, characterization and distribution of transposable elements in the flax (Linum usitatissimum L.) genome. BMC Genomics, 13, p. 644.
Zhernova, D.A., Pushkova, E.N., Rozhmina, T.A., Borkhert, E.V., Arkhipov, A.A., Sigova, E.A., Dvorianinova, E.M., Dmitriev, A.A. & Melnikova, N.V. (2025), History and prospects of flax genetic markers. Frontiers in Plant Science, 15, p.1495069.