Bioactive compound content and biological activity of blueberry leaves and fruits
DOI:
https://doi.org/10.59463/rfn4da53Keywords:
Vaccinum spp., anthocyanins, phenols, phytotherapy, antimicrobial activity, chlorogenic acidAbstract
The blueberry is part of the Ericaceae family and is known for its expansion in different areas of the globe, due to the quality of the fruits and their beneficial properties on human health. In this work, in addition to the biological action (antimicrobial, antioxidant, therapeutic effects, possible toxic effects of the leaves), the differences in the content of metabolites from varieties, hybrids or wild plants from different regions are evaluated. The leaves are rich in flavonoids and polyphenols, especially chlorogenic acid, and isoquercetin. The fruits are rich in antimicrobial compounds, with anti-inflammatory and neuronal activity. It was found that there are differences in the level of phytochemical compounds depending on the tested variety. An important aspect that must be taken into account are the potential toxic compounds, especially if the aim is to use certain parts of the plant in food or as food supplements. The fruits have high antioxidant capacity, due to the content in biocompounds. The content of flavonoids and anthocyanins is very high. Some studies have shown that wild blueberries are characterized by a higher content of phenolic compounds, compared to cultivated blueberries. It is believed that the differences between hybrids or varieties are the result of climate, cultivation area and genotype.
References
Abreu, O.A., Barreto, G., & Prieto, S. (2014), Vaccinium (ericaceae): Ethnobota ny and pharmacological potentials. Emirates J Food A, 26, pp. 577-91.
Aly, R. (2014), Microbial infections of skin and nails. In: Baron S., editor. Medical Microbiology. 4th ed. The University of Texas Medical Branch at Galveston; Galveston, TX, USA.
Ballington, J.R., Rooks, S.D., Cline, W.O., Meyer, J.R., & Milholland, R.D. (1997), The North Carolina State University Blueberry Breeding Program - Toward V. x Covilleanum? Acta Horticulturae, 446, pp. 243–250.
a] Brambilla, A., Lo Scalzo, R., Bertolo, G., Torreggiani, D. (2008), Steam-blanched highbush blueberry
(Vaccinium corymbosum L.) juice: phenolic profile and antioxidant capacity in relation to cultivar
selection. Journal of Agricultural and Food Chemistry, 56(8), pp. 2643–2648.
Banados, M.P. (2009), Expanding blueberry production into non-traditional production areas: Northern Chile and Argentina, Mexico and Spain. Acta Hortic., 810, pp. 439–444.
Barbieri, R., Coppo, E., Marchese, A., Daglia, M., Sobarzo-Sánchez, E., Nabavi, S.F., & Nabavi, S.M. (2017). Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res., 196, pp. 44–68. doi: 10.1016/j.micres.2016.12.003.
Barnes, J.S., Nguyen, H.P., Shen, S., & Schug, K.A. (2009), General method for extraction of blueberry anthocyanins and identification using high performance liquid chromatography-electrospray ionization-ion trap-time of flight-mass spectrometry. J. Chromatogr. A., 1216, pp. 4728–4735. doi: 10.1016/j.chroma.2009.04.032.
Bates, R.P., Morris, J.R., & Crandall, P.G. (2001). Principles and practices of small- and medium-scale fruit juice processing. FAO Agricultural Services Bulletin, 146, pp. 135–149
Bharadwaj, A., Rastogi, A., Pandey, S., Gupta, S., & Sohal, J.S. (2022), Multidrug-Resistant Bacteria: Their Mechanism of Action and Prophylaxis. Biomed Res Int., 5, 5419874. doi: 10.1155/2022/5419874.
Bintsis, T. (2017), Foodborne pathogens. AIMS Microbiol., 3, 529. doi:10.3934/microbiol.2017.3.529.
Brazelton, C., Fain, C., Aragon, L., Bauer, N. (2019), IBO 2019 State of the Blueberry Industry Report. International Blueberry Organization. Available online:
https://www.internationalblueberry.org/downloads/online-visualization/.
Bertová, L. (1982), Flóra Slovenska III. 1st ed. Bratislava: Veda.
Bouyahya, A, Omari, N.E., El Hachlafi, N., Jemly, M.E., Hakkour, M., Balahbib, A., El Menyiy, N., Bakrim, S., Naceiri Mrabti, H., Khouchlaa, A., Mahomoodally, M.F., Catauro, M., Montesano, D., & Zengin, G. (2022), Chemical Compounds of Berry-Derived Polyphenols and Their Effects on Gut Microbiota, Inflammation, and Cancer. Molecules, 20, 27(10), 3286. doi: 10.3390/molecules27103286.
a] Bujor, O.-C., Le Bourvellec, C., Volf, I., Popa, V.I., Dufour, C. (2016), Seasonal variations of the phenolic constituents in bilberry (Vaccinium myrtillus L.) leaves, stems and fruits, and their antioxidant activity. Food Chem., 213, pp. 58–68.
Chen, Q., Ou, Z., & Lv, H. (2024), Cadmium toxicity in blueberry cultivation and the role of arbuscular mycorrhizal fungi. Ecotoxicol Environ Saf., 288, 117364. doi: 10.1016/j.ecoenv.2024.117364.
a] Cladis, D.P., & Li, S., Reddivari L, Cox A, Ferruzzi MG, Weaver CM. (2020), A 90 day oral toxicity study of blueberry polyphenols in ovariectomized sprague-dawley rats. Food Chem Toxicol. 139, 111254. doi: 10.1016/j.fct.2020.111254.
Colak, N., Torun, H., Gruz, J., Strnad, M., Hermosín-Gutiérrez, I., Hayirlioglu-Ayaz, S., & Ayaz, F.A. (2016), Bog Bilberry Phenolics, Antioxidant Capacity and Nutrient Profile. Food Chemistry 201, pp 339–349.
Cardeñosa, V., Girones-Vilaplana, A., Muriel, J. L., Moreno, D. A., & Moreno Rojas, J. M. (2016), Influence of Genotype, Cultivation System and Irrigation Regime on Antioxidant Capacity and Selected Phenolics of Blueberries (Vaccinium Corymbosum L.). Food Chem., 202, pp. 276–283. doi:10.1016/j. foodchem.2016.01.118
Correia, S., Matos, M., Leal, F. (2024), Advances in Blueberry (Vaccinium spp.) In Vitro Culture: A Review. Horticulturae, 10(6), 533. https://doi.org/10.3390/horticulturae10060533.
Crespo, M.C., Visioli, F. (2017), A brief review of blue- and bilberries’ poten tial to curb cardio-metabolic perturbations: focus on diabetes. Curr Pharm Des., 23(7), pp. 983-8.
Czernicka, M., Sowa-Borowiec, P., Puchalski, C., & Czerniakowski, Z. W. (2024), Content of Bioactive Compounds in Highbush Blueberry Vaccinium corymbosum L. Leaves as a Potential Raw Material for Food Technology or Pharmaceutical Industry. Foods, 13(2), 246. https://doi.org/10.3390/foods13020246
Del Rio, D., Borges, G., & Crozier, A. (2010), Berry Flavonoids and Phenolics: Bioavailability and Evidence of Protective Effects. Br. J. Nutr., 104, pp. S67–S90. doi: 10.1017/S0007114510003958.
Du, Q., Jerz, G., & Winterhalter, P. (2004), Isolation of Two Anthocyanin Sambubiosides from Bilberry (Vaccinium Myrtillus) by High-Speed Counter current Chromatography. J. Chromatogr., A 1045, pp. 59–63. doi:10.1016/j.chroma. 2004.06.017.
Enguita, F.J., & Leitão, A.L. (2013), Hydroquinone: environmental pollution, toxicity, and microbial answers. Biomed Res Int., 542168. doi: 10.1155/2013/542168.
Faleva, A.V., Ulyanovskii, N.V., Onuchina, A.A., & Kosyakov, D.S. (2024), Polyphenolic Antioxidants in Bilberry Stems and Leaves: A Non-Targeted Analysis by Two-Dimensional NMR Spectroscopy and Liquid Chromatography–High-Resolution Mass Spectrometry. Antioxidants, 13, 1409. https://doi.org/10.3390/ antiox13111409
Fang, Y., Nunez, G. H., Silva, M. N. d., Phillips, D. A., & Munoz, P. R. (2020), A Review for Southern Highbush Blueberry Alternative Production Systems. Agronomy, 10(10), 1531. https://doi.org/10.3390/agronomy10101531
Finn, C.E., Hancock, J.F., Olmstead, J.W., & Brazelton, D.M. Welcome to the party! blueberry breeding mixes private and public with traditional and molecular to create a vibrant new cocktail. Acta Hortic., 2014, 1017, pp. 51–62.
Flores-Mireles, A.L., Walker, J.N., Caparon, M., & Hultgren, S.J. (2015), Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol., 13, pp. 269–284. doi: 10.1038/nrmicro3432.
Girard, K.K., & Sinha, N.K. (2006), Cranberry, Blueberry, Currant, and Gooseberry. Handbook of Fruits and Fruit Processing, pp. 369–390.
Giovanelli, G., Brambilla, A., Rizzolo, A., & Sinelli, N. (2012), Effects of blanching pre-treatment and sugar composition of the osmotic solution on physico-chemical, morphological and antioxidant characteristics of osmodehydrated blueberries (Vaccinium corymbosum L.). Food Res. Int., 49, pp. 263–271. doi: 10.1016/j.foodres.2012.08.015.
Hera, O., Sturzeanu, M., Vîjan, L.E., Tudor, V., Teodorescu, R. (2023). Biochemical Evaluation of
Some Fruit Characteristics of Blueberry Progenies Obtained from 'Simultan × Duke'. ACS Omega 8(21),
–18616.
Hera, O., (2024), The origin of romanian blueberry cultivars. Scientific Papers. Series B, Horticulture, LXVIII, 1, Print ISSN 2285-5653, CD-ROM ISSN 2285-5661, Online ISSN 2286-1580, ISSN-L 2285-5653.
a] Hera, O., Sturzeanu, M., Vîjan, L.E., Tudor, V., Teodorescu, R. (2023), Biochemical Evaluation of
Some Fruit Characteristics of Blueberry Progenies Obtained from “Simultan × Duke”, ACS Omega 8(21),
pp. 18603–18616.
Hokkanen, J., Mattila, S., Jaakola, L., Anna Maria, Pirttilae & Tolonen, A. (2009), Identification of Phenolic Compounds from Lingonberry (Vaccinium vitis idaeal.), Bilberry (Vaccinium myrtillusL.) and Hybrid Bilberry (Vaccinium X Intermediumruthe L.) Leaves. J. Agric. Food Chem., 57, pp. 9437–9447. doi:10.1021/ jf9022542.
Ichiyanagi, T., Kashiwada, Y., & Nashimoto, M. (2020), Large-scale Isolation of Three O-Methyl Anthocyanins from Bilberry (Vaccinium Myrtillus L.) Extract. Chem. Pharm. Bull., 68, pp. 1113–1116. doi:10.1248/cpb.c20-00593.
Ieri, F., Martini, S., Innocenti, M., & Mulinacci, N. (2013), Phenolic Distribution in Liquid Preparations of Vaccinium myrtillus L. and Vaccinium vitis Idaea L. Phytochemical Analysis 24, pp. 467−475.
Jiang, N, Xiang, L, Guan, H, & Zhang, X. (2023), Blueberry (Vaccinium myrtillus) Induced Anaphylaxis in a Chinese Child with Lipid Transfer Protein Sensitization. J Asthma Allergy., 18, 16, pp. 1253-1258. doi: 10.2147/JAA.S436561.
Jimenez-Garcia, S.N., Guevara-Gonzalez, R.G., Miranda-Lopez, R., Feregrino-Perez, A.A., Torres-Pacheco, I., & Vazquez-Cruz, M.A. (2013), Functional Properties and Quality Characteristics of Bioactive Compounds in Berries: Biochemistry, Biotechnology, and Genomics. Food Res. Int., 54, pp. 1195–1207. doi: 10.1016/j.foodres.2012.11.004.
a] Jubeh, B., Breijyeh, Z., & Karaman, R. (2020), Resistance of Gram-Positive Bacteria to Current Antibacterial Agents and Overcoming Approaches. Molecules, 25(12), 2888. https://doi.org/10.3390/molecules25122888
Kähkönen, M. P., Heinämäki, J., Ollilainen, V., & Heinonen, M. (2003), Berry Anthocyanins: Isolation, Identification and Antioxidant Activities. J. Sci. Food Agric., 83, pp. 1403–1411. doi:10.1002/jsfa.1511.
Kang M.J., Ha, H.W., Kim, G.H., Lee, S.K., Ahn, Y.T., Kim, D.H., Jeong, H.G., & Jeong, T.C. (2012), Role of Metabolism by Intestinal Bacteria in Arbutin-Induced Suppression of Lymphoproliferative Response in vitro. Biomol Ther (Seoul)., 20(2), pp. 196-200. doi: 10.4062/biomolther.2012.20.2.196.
Karam, M.C., Petit, J., Zimmer, D., Baudelaire Djantou, E., & Scher, J. (2016), Effects of drying and grinding in production of fruit and vegetable powders. A review. J Foods Eng., 188, pp. 32-49.
Kopystecka, A., Kozioł, I., Radomska, D., Bielawski, K., Bielawska, A., & Wujec, M. (2023), Vaccinium uliginosum and Vaccinium myrtillus—Two Species—One Used as a Functional Food. Nutrients, 15, 4119.
Stanoeva, J.P., Stefova, M., Andonovska, K.B., Vankova, A., Stafilov, T. (2017), Phenolics and mineral content in bilberry and bog bilberry from Macedonia. Int. J. Food Prop. 20, pp. S863–S883.
Kovačević, N. (2002), Basis of Pharmacognosy, Serbian schoolbook, Belgrade. pp. 162-162.
Jubeh, B., Breijyeh, Z., & Karaman, R. (2020), Resistance of gram-positive bacteria to current antibacterial agents and overcoming approaches. Molecules. 25(12), 2888. doi: 10.3390/molecules25122888.
Heinonen, M. (2007), Antioxidant Activity and Antimicrobial Effect of Berry Phenolics– a Finnish Perspective. Mol. Nutr. Food Res., 51, pp. 684–691. doi:10. 1002/mnfr.200700006.
Hotchkiss, A.T., Chau, H.K., Strahan, G.D., Nuñez, A., Simon, S., White, A.K., Dieng, S., Heuberger, E.R., Yadav, M.P., & Hirsch, J. (2021), Structure and composition of blueberry fiber pectin and xyloglucan that bind anthocyanins during fruit puree processing. Food Hydrocolloids, 116, 106572.
Kliment, J., & Valachovič, M. (2007), Rastlinné Spoločenstvá Slovenska. 4. Vysokohorská Vegetácia. 1st ed. Bratislava: Veda.
Lavefve, L., Howard, L. R., Carbonero, F. (2020), Berry polyphenols metabolism and impact on human gut microbiota and health. Food & function, 11(1), pp. 45–65.
Lohachoompol, V., Mulholland, M., Srzednicki, G., & Craske, J. (2008), Determination of anthocyanins in various cultivars of highbush and rabbiteye blueberries. Food Chem., 111, pp. 249–254. doi: 10.1016/j.foodchem.2008.03.067.
Mazilu, I.E., Vîjan, L.E., & Cosmulescu, S. (2022), The Influence of Harvest Moment and Cultivar on Variability of Some Chemical Constituents and Antiradical Activity of Dehydrated Chokeberry Pomace. Horticulturae, 8(6), 544.
Michalska, A, & Łysiak, G. (2015), Bioactive compounds of blueberries: Post harvest factors influencing the nutritional value of products. Int J Mol Sci., 16, 18642-63.
Mikulic-Petkovsek, M., Schmitzer, V., Slatnar, A., Stampar, F., & Veberic, R. (2014), A Comparison ofFruit Quality Parameters of Wild Bilberry (Vaccinium myrtillusL.) Growing at Different Locations. J. Sci. Food Agric., 95, pp. 776–785. doi:10.1002/jsfa.6897.
Min, G., & Chun-Zhao, L. (2005), Comparison of techniques for the extraction of flavonoids from cultured cells of Saussurea medusa Maxim. World J. Microb. Biot. 21, pp. 1461-1463.
Namesny, A. (2021), Qué Variedades de Arándanos Deberíamos Plantar en Europa? Agenda Blueberry Conference. Available online: https://www.tecnologiahorticola.com/variedades-arandanos/.
Negi, P.S. (2012), Plant extracts for the control of bacterial growth: Efficacy, stability and safety issues for food application. Int. J. Food Microbiol. 156, pp. 7–17. doi: 10.1016/j.ijfoodmicro.2012.03.006.
Ness, A.R., & Powles, J.W. (1997), Fruit and Vegetables, and Cardiovascular Disease: A Review. International Journal of Epidemiology 26, pp. 1–13.
Nile, S.H., Ko, E.Y., Kim, D.H., Keum, Y.-S., Nile, S.H., Ko, E.Y., Kim, D.H., & Keum, Y.-S. (2016), Screening of Ferulic Acid Related Compounds as Inhibitors of Xanthine Oxidase and Cyclooxygenase-2 with Anti-Inflammatory Activity. Rev. Bras. Farmacogn. 26, pp. 50–55. doi: 10.1016/j.bjp.2015.08.013.
Nile, S.H., & Park, S.W. (2014), Edible Berries: Bioactive Components and Their Effect on Human Health. Nutrition. 30, pp. 134–144. doi: 10.1016/j.nut.2013.04.007.
Nowak, D.; Gośliński, M.; & Wojtowicz, E. (2016), Comparative Analysis of the Antioxidant Capacity of Selected Fruit Juices and Nectars: Chokeberry Juice as a Rich Source of Polyphenols. International Journal of Food Properties 19, pp. 1317–1324.
a] Okan, O.T., Ilhan Deniz, I., Yayli, N., Şat, I.G., Öz, M., Hatipoğlu Serdar, G. (2018), Antioxidant Activity, Sugar Content and Phenolic Profiling of Blueberries Cultivars: A Comprehensive Comparison. Not Bot Horti Agrobo, 46(2), pp. 639-652. DOI:10.15835/nbha46211120.
Pires, T., Cristina Caleja, C., Santos-Buelga, C., Barros, L., & Ferreira, I. (2020), Vaccinium myrtillus L. Fruits as a Novel Source of Phenolic Compounds with Health Benefits and Industrial Applications - A Review. Current Pharmaceutical Design, 26, pp. 1917-1928
Puupponen-Pimia, R., Nohynek, L., Alakomi, H.L., & Oksman, K.M. (2005), Bioactive berry compounds-novel tools against human pathogens. Appl. Microbiol. Biotechnol. 67, pp. 8-18.
Puupponen-Pimiä, R., Nohynek, L., Meier, C., Kähkönen, M., Heinonen, M., Hopia, A., & Oksman-Caldentey, K.M. (2001), Antimicrobial Properties of Phenolic Compounds from Berries. Journal of Applied Microbiology, 90, pp. 494–507.
Riihinen, K., Jaakola, L., Kärenlampi, S., & Hohtola, A. (2008), Organ-specific Distribution of Phenolic Compounds in Bilberry (Vaccinium Myrtillus) and ‘northblue’ Blueberry (Vaccinium Corymbosum X V. Angustifolium). Food Chem. 110, pp. 156–160. doi:10.1016/j.foodchem.2008.01.057.
Rossi, M., Giussani, E., Morelli, R., Lo Scalzo, R., Nani, R.C., & Torreggiani, D. (2003), Effect of fruit blanching on phenolics and radical scavenging activity of highbush blueberry juice. Food Res. Int., 36, pp. 999–1005.
Salaheen, S., Peng, M., Joo, J., Teramoto, H., & Biswas, D. (2017), Eradication and Sensitization of Methicillin Resistant Staphylococcus aureus to Methicillin with Bioactive Extracts of Berry Pomace. Front Microbiol. 8, 253. doi: 10.3389/fmicb.2017.00253.
Satoh, Y., Ishihara, K. (2020), Investigation of the antimicrobial activity of Bilberry (Vaccinium myrtillus L.) extract against periodontopathic bacteria. J Oral Biosci., 62(2), p. 169-174. doi: 10.1016/j.job.2020.01.009.
Schaik, W., Top, J., Riley, D.R., Boekhorst, J., Vrijenhoek, E.P.J., Schapendonk, M.E.C., Hendrickx, P.A.A., Nijman, J.I., Bonten, J.M.M., Tettelin, H., & Willems, J.L.R. (2010), Pyrosequencing-based comparative genome analysis of the nosocomial pathogen Enterococcus faecium and identification of a large transferable pathogenicity island. BMC Genomics 11, 239.
Slavin, J.L., Lloyd, B. (2012), Health benefits of fruits and vegetables. Advances in nutrition, 3(4), p. 506–516.
Soetan, K.O., Olaiya, C.O., & Oyewole, O.E. (2010), The Importance of Mineral Elements for Humans, Domestic Animals and Plants: A Review. African Journal of Food Science 4, pp. 200–222.
Song, G.-Q., & Sink, K.C. (2006), Blueberry (Vaccinium corymbosum L.); Methods in Molecular Biology; Springer: Berlin/Heidelberg, Germany, 344, pp. 263–272.
Song, G.Q. (2014); Blueberry (Vaccinium corymbosum L.); Methods in Molecular Biology; Springer: Berlin/Heidelberg, Germany,1224, pp. 121–131.
Song, H.N., Ji, S.A., Park, H.R., Kim, H.H., Hogstrand, C. (2018), Impact of various factors on color stability of fresh blueberry juice during storage. Preventive nutrition and Food Science, 23(1), p. 46–51.
Stanoeva, J.P., Stefova, M., Andonovska, K.B., Vankova, A., & Stafilov, T. (2017), Phenolics and mineral content in bilberry and bog bilberry from Macedonia. Int. J. Food Prop. 20, pp. S863–S883.
Stefanescu, R., Laczkó-Zöld, E., Osz, B.-E., & Vari, C.-E. (2023), An Updated Systematic Review of Vaccinium myrtillus Leaves: Phytochemistry and Pharmacology. Pharmaceutics 15, 16. https://doi.org/10.3390/ pharmaceutics15010016.
Stefănescu, B.E., Szabo, K., Mocan, A., & Crisan, G. (2019), Phenolic Compounds from Five Ericaceae Species Leaves and Their Related Bioavailability and Health Benefits. Molecules 24, 2046.
Steinmetz, K.A., & Potter, J.D. (1996), Vegetables, Fruit, and Cancer Prevention: A Review. Journal of the American Dietetic Association, 96, pp. 1027–1039.
Suriyaprom, S., Mosoni, P., Leroy, S., Kaewkod, T., Desvaux, M., & Tragoolpua, Y. (2022), Antioxidants of Fruit Extracts as Antimicrobial Agents against Pathogenic Bacteria. Antioxidants, 11, 602. https:/doi.org/10.3390/antiox11030602.
Szakiel, A., Voutquenne-Nazabadioko, L., & Henry, M. (2011), Isolation and biological activities of lyoniside from rhizomes and stems of Vaccinium myrtillus. Phytochem. Lett. 4, pp. 138–143.
Szajdek, A., & Borowska, E.J. (2008), Bioactive Compounds and Health-promoting Properties of Berry Fruits: A Review. Plant Foods for Human Nutrition 63, pp. 147–156.
Teleszko, M.; Wojdyło, A. (2015), Comparison of phenolic compounds and antioxidant potential between selected edible fruits and their leaves. J. Funct. Foods, 14, pp. 736–746.
Tobar-Bolaños, G., Casas-Forero, N., Orellana-Palma, P., Petzold, G. (2021), Blueberry juice: Bioactive compounds, health impact, and concentration technologies - A review. Journal of Food Science, 86(12), p. 5062–5077.
Tomićević J, Bjedov I, Obratov-Petković D, Milovanović M (2011), Exploring the Park-People Relation: Collection of Vaccinium Myrtillus L. by local people from Kopaonik National Park in Serbia. Environ. Manage. 48(4), p. 835-846.
Tundis, R., Tenuta, M.C., Loizzo, M.R., Bonesi, M., Finetti, F., Trabalzini, L., & Deguin, B. (2021), Vaccinium Species (Ericaceae): From Chemical Composition to Bio-Functional Activities. Appl. Sci. 11, 5655. https://doi.org/10.3390/app11125655
Tutin, T.G., Heywood, V.H., Burges, N.A., Valentine, D.H., Walters, S.M., & Webb, D.A. (1972), Flora Europea; Cambridge University Press: Cambridge, UK, 3, pp. 12–13.
a] Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.-H.; Jaremko, M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules 2020, 25, 5243.
Vaneková, Z., Vanek, M., Škvarenina, J., & Nagy, M. (2020), The Influence of Local Habitat and Microclimate on the Levels of Secondary Metabolites in Slovak Bilberry (Vaccinium Myrtillus L.) Fruits. Plants 9, 436. doi:10.3390/plants9040436.
Vendrame, S., Del Bo, C., Ciappellano, S., Riso, P., & Klimis-Zacas, D. (2016), Berry Fruit Consumption and Metabolic Syndrome. Antioxidants. 5, 34. doi: 10.3390/antiox5040034.
Vucic, D.M., Petkovic, M.R., Rodic-Grabovac, B.B., Stefanovic, O.D., Vasic, S.M., & Comic, L.R. (2013), Antibacterial and antioxidant activities of bilberry (Vaccinium myrtillus L.) in vitro. Afr. J. Microbiol. Res, 7, pp. 5130-5136.
Wang, C., Gong, X., Bo, A., Zhang, L., Zhang, M., Zang, E., Zhang, C., & Li, M. (2020), Iridoids: Research Advances in Their Phytochemistry, Biological Activities, and Pharmacokinetics. Molecules 25, 287.
Zhang, Y., Liu, F., Wang, B., Wu, H., Wu, J., Liu, J., Sun, Y., Cheng, C., & Qiu, D. (2021), Identification, characterization and expression analysis of anthocyanin biosynthesis-related bHLH genes in blueberry (Vaccinium corymbosum L.). Int. J. Mol. Sci. 22, 13274.
Zoratti, L., Klemettilä, H., & Jaakola, L. (2016), Bilberry (Vaccinium Myrtillus L.) Ecotypes. Nutr. Compos. Fruit Cultiv. 2016, pp. 83–99. doi:10.1016/b978-0-12-408117-8.00004-0
Zorenc, Z., Veberic, R., Stampar, F., Koron, D., & Mikulic-Petkovsek, M. (2016), White versus Blue: Does the Wild ‘albino’ Bilberry (Vaccinium Myrtillus L.) Differ in Fruit Quality Compared to the Blue One? Food Chem. 211, pp. 876–882. doi:10.1016/j.foodchem.2016.05.142.
https://blueberriesconsulting.com/en/serbia-y-rumania-lideran-el-avance-del-arandano/
https://milborpmc.com/blog/romania-continues-to-grow/), which has a tradition in blueberry cultivation