Phenological growth stages of ‘Kanzi’ apple according to the BBCH scale
DOI:
https://doi.org/10.59463/h3thfy79Keywords:
BBCH code, phenology, flowering, reproductive stage, climate conditionsAbstract
The accurate identification and codification of phenological growth stages are essential for optimizing management practices in apple orchards. This study presents a detailed phenological characterization of the 'Kanzi' apple cultivar (Malus domestica Borkh.), using the BBCH (Biologische Bundesanstalt, Bundessortenamt and Chemical industry) scale. Observations were conducted over two annual growing seasons (2022-2023) in a temperate-climate orchard, monitoring the cultivar’s development from bud dormancy through fruit maturity and post-harvest senescence. Each principal and secondary growth stage was recorded and described with photographic and morphological references, emphasizing cultivar-specific traits such as delayed bud break, condensed flowering period, and firm fruit development. Results showed that 'Kanzi' exhibits unique timing and morphological markers within certain BBCH stages, particularly in flowering (stage 60–69) and fruit development (stage 70–89), when compared to standard cultivars. This codification provides a standardized framework to support research, crop modeling, and precision horticulture practices applied to 'Kanzi' apples.
References
Ameen, M., Mahmood, A., Ahmad, M., Mansoor Javaid, M., Nadeem, M. A., Asif, M., Balal, M. R., & Khan, B. Ameen, M., Mahmood, A., Ahmad, M., Mansoor Javaid, M., Nadeem, M. A., Asif, M., Balal, M. R., & Khan, B. A. (2023). Impacts of climate change on fruit physiology and quality. In Climate-resilient agriculture, vol 1: crop responses and agroecological perspectives (pp. 93-124). Cham: Springer International Publishing.
Atkinson, C. J., Brennan, R. M., & Jones, H. G. (2013). Declining chilling and its impact on temperate perennial crops. Environmental and Experimental Botany, 91, 48-62.
Atkinson, R. G., Brummell, D. A., Burdon, J. N., Patterson, K. J., & Schaffer, R. J. (2013). Fruit growth, ripening and post-harvest physiology. Plant & Food Research.
Bejaei, M., & Arthur, J. (2025). Exploring the Effects of Fruit Brand Names on Consumer Preferences: A Case Study of Apple Consumer Behavior. Journal of Sensory Studies, 40(2), e70035.
Fadón, E., Herrero, M., & Rodrigo, J. (2015). Flower development in sweet cherry framed in the BBCH scale. Scientia Horticulturae, 192, 141-147.
Gheorghiu, N., & Cosmulescu, S. (2022). Changes in Spring Phenology in Apple Tree and its Resistance to Late Frost Under the Climate Conditions of Stanesti Area, Arges County, Romania. AgroLife Scientific Journal, 11(2). https://doi.org/10.17930/AGL202226
Guan, C., Che, Q., Zhang, P., Huang, J., Chachar, S., Ruan, X., Wang, R., & Yang, Y. (2021). Codification and description of growth stages in persimmon (Diospyros kaki Thunb.) using the extended BBCH scale. Scientia Horticulturae, 280, 109895.
Heck, R. H. (1992). Principals’ instructional leadership and school performance: Implications for policy development. Educational evaluation and policy analysis, 14(1), 21-34.
Hernández Delgado, P.M., Aranguren, M., Reig, C., Fernández Galván, D., Mesejo, C., Martínez Fuentes, A., Galán Saúco, V., & Agustí, M. (2011). Phenological growth stages of mango (Mangifera indica L.) according to the BBCH scale. Scientia Horticulturae, Volume 130, Issue 3, 536-540. ISSN 0304-4238,
Hess, M., Barralis, G., Bleiholder, H., Buhr, L., Eggers, T. H., Hack, H., & Stauss, R. (1997). Use of the extended BBCH scale-general for the descriptions of the growth stages of mono; and dicotyledonous weed species. Weed research, 37(6), 433-441. https://doi.org/10.1016/j.scienta.2011.07.027.
Kron, P., Husband, B. C., Kevan, P. G., & Belaoussoff, S. (2001). Factors affecting pollen dispersal in high-density apple orchards. HortScience, 36(6), 1039-1046.
Lateur, M., Ordidge, J., Engels, J., & Lipman, E. (2013). Report of a Working Group on Malus/Pyrus: Fourth meeting, Weggis, Switzerland.
Luedeling, E., Zhang, M., & Girvetz, E. H. (2011). Climatic changes lead to declining winter chill for fruit and nut trees in California during 1950–2099. PLoS ONE, 6(5), e20155. https://doi.org/10.1371/journal.pone.0020155
Luedeling, E. (2012). Climate change impacts on winter chill for temperate fruit and nut production: a review. Scientia Horticulturae, 144, 218-229.
Manzoor, S.H., Zhang, Z., & Yu, S. (2025). Precision Pollination in Apple Orchards: A Pollination Model for Calculating Importance of Apple Flowering Stages for Yield Maximization. In: Zhang, Z., Zhu, D., Zuo, C., Han, B., Liu, P., Wang, Z. (eds) Apple Production Technologies: From Laboratory to Practical Applications. Smart Agriculture, vol 12. Springer, Singapore. https://doi.org/10.1007/978-981-96-5747-6_4
Martínez, R., Legua, P., Martínez-Nicolás, J. J., & Melgarejo, P. (2019). Phenological growth stages of “Pero de Cehegín” (Malus domestica Borkh): Codification and description according to the BBCH scale. Scientia Horticulturae, 246, 826-834.
Meier, U., Bleiholder, H., Buhr, L., Feller, C., Hack, H., Heß, M., Lancashire, P. D., Schnock, U., Stauß, R., van den Boom, T., Weber, E.& Zwerger, P. (2009). The BBCH system to coding the phenological growth stages of plants–history and publications. Journal für Kulturpflanzen, 61(2), 41-52.
Meteomanz, 2025. URL: www.meteomanz.com.
Mounzer, O. H., Conejero, W., Nicolás, E., Abrisqueta, I., Garcia-Orellana, Y. V., Tapia, L. M., Vera, J., Abrisqueta, J. M. & del Carmen Ruiz-Sánchez, M. (2008). Growth pattern and phenological stages of early-maturing peach trees under a Mediterranean climate. HortScience, 43(6), 1813-1818. https://doi.org/10.21273/HORTSCI.43.6.1813
Pérez-Pastor, A., Ruiz-Sánchez, M., Domingo, R., & Torrecillas, A. (2004). Growth and phenological stages of Búlida apricot trees in south-east Spain. Agronomie 24.2: 93-100. ⟨10.1051/agro:2004004⟩. ⟨hal-00886246⟩
Perry, T. O. (1971). Dormancy of Trees in Winter: Photoperiod is only one of the variables which interact to control leaf fall and other dormancy phenomena. Science, 171(3966), 29-36.
Potgieter, A. B., Zhao, Y., Zarco-Tejada, P. J., Chenu, K., Zhang, Y., Porker, K., Biddulph, B., Dang, Y. P., Neale, T., Roosta, F., & Chapman, S. (2021). Evolution and application of digital technologies to predict crop type and crop phenology in agriculture. in silico Plants, 3(1), diab017, https://doi.org/10.1093/insilicoplants/diab017
Robin, J., Bernard, A., Albouy, L., Papillon, S., Tranchand, E., Hebrard, M. N., Philibert, J. B., Barbedette, Schafleitner, S., Wenden, B., Barreneche, T., Lheureux, F., & Toillon, J. (2024). Description of Phenological Events of Persian Walnut (Juglans regia L.) according to the Extended BBCH Scale and Historical Scales. Horticulturae, 10(4), 402.
Taghavi, T., Rahemi, A., & Suarez, E. (2022). Development of a uniform phenology scale (BBCH) in hazelnuts. Scientia Horticulturae, 296, 110837.
Tutiempo, 2025. URL: https://en.tutiempo.net/climate/ws-150630.html
Vanoli, M., Lovati, F., Grassi, M., Buccheri, M., Zanella, A., Cattaneo, T. M. P., & Rizzolo, A. (2018), Water spectral pattern as a marker for studying apple sensory texture. Advances in Horticultural science, 32(3), 343-352.
Volk, G. M., Cornille, A., Durel, C. E., & Gutierrez, B. (2021). Botany, taxonomy, and origins of the apple. In The apple genome (pp. 19-32). Cham: Springer International Publishing.
Westerband, A. C., Funk, J. L., & Barton, K. E. (2021). Intraspecific trait variation in plants: a renewed focus on its role in ecological processes. Annals of botany, 127(4), 397-410.