Cuttings rooting of some Echeveria genotypes in relation to biostimulating substances

Authors

  • Cristina TOTA University of Life Sciences "King Mihai I" from Timisoara Author
  • Nicoleta IBRION Emergency Hospital Radiology Author
  • Cristian BERAR University of Life Sciences "King Mihai I" from Timisoara Author
  • Florin SALA University of Life Sciences "King Mihai I" from Timisoara Author

DOI:

https://doi.org/10.59463/576pdt92

Keywords:

Echeveria, leaf cuttings, rooting biostimulators, vegetative multiplication

Abstract

The study evaluated the rooting of cuttings of five Echeveria species in relation to biostimulating substances. Leaf cuttings from the following genotypes were used: Echeveria lutea Rose (G1), Echeveria amoena De Smet (G2), Echeveria shaviana Walther (G3), Echeveria longissima var. longissima Walther (G4), and Echeveria setosa var. ciliata Moran (G5). Three biostimulants were used, Adam LQD (T1), Rizocyn (T2) and Kinactiv root (T3), compared to a control variant (Ct). Twenty experimental variants resulted, organized in repetitions. Fine sand was used as a rooting substrate, in alveolar trays. The experiment was in a protected space, a greenhouse. The G3 genotype, followed by the G2 genotype, was more receptive to the applied treatments and led to better rooting. The T3 biostimulator followed by T2 had a better rooting effect. The combination of the G3 genotype with the T3 biostimulator represented the best rooting option under the study conditions.

References

Awotedu, B.F., Omolola, T.O., Akala, A.O., Awotedu, O.L., & Olaoti-Laaro, S.O. (2021), Vegetative propagation: A unique technique of improving plants growth. World News of Natural Sciences, 35, 83-101.

Benbya, A., Cherkaoui, S., Gaboun, F., Chlyah, O., Delporte, F., & Alaoui M.M. (2021), Clonal propagation of Argania spinosa (L.) skeels: effects of leaf retention, substrate and cutting diameter. Advances in Horticultural Science, 35(1), 61-72.

Borys, M.W., & Leszczyńska-Borys, H. (2013), The genus Echeveria as a potential new floral crop. Acta Horticulturae, 1000, 91-96.

Cabahug, R.A.M., Tran, M.K.T.H., Ahn, Y.-J., & Hwang, Y.-J. (2022), Retention of mutations in colchicine-induced ornamental succulent Echeveria ‘Peerless’. Plants, 11, 3420.

Chang, Y., Xue, T., Peñuelas, J., Sardans, J., Zhou, J., Zhou, Y., Xu, C., Zheng, X., Peng, W.X., Deng, Y., Zhong, Q., & Li, B. (2024), A novel rejuvenation approach to improve rooting capacity and its mechanism in Cunninghamia lanceolata. Forest Ecology and Management, 563, 121992.

Dănăilă-Guidea, S.M., Damian, E., Dobrinoiu, R.-V., Enache, M., Popa, G., & Vișan, V.-L. (2024), Vegetative propagation system for Helichrysum italicum plants with ornamental and medicinal properties. Scientific Papers. Series B, Horticulture, LXVIII(2), 653-660.

Druege, U. (2020), Overcoming physiological bottlenecks of leaf vitality and root development in cuttings: A systemic perspective. Frontiers in Plant Science, 11, 907.

Gallego, M.S., Gascón, M.T., & Pascual, L.S.E. (2025), Optimization of vegetative propagation techniques for Juniperus communis L. under greenhouse conditions. International Journal of Plant Biology, 16(2), 57.

García-Ruiz, I., Valentín-Martínez, D., Carrillo-Reyes, P., & Costea, M. (2016), Taxonomic and floristic novelties for Echeveria (Crassulaceae) in Central Michoacan, Mexico. PhytoKeys, 75, 1–13.

Geelen, D. (2025), Utility of biostimulants in ornamental horticulture. Acta Horticulturae, 1417, 73-78.

Gorelick, R. (2015), Why vegetative propagation of leaf cuttings is possible in succulent and semi-succulent plants. Haseltonia, (20), 51-57.

Ha Tran, M.K.T., CabahugBraza, R.A.M., & Hwang, Y.-J. (2024), Echeveria leaf morpho-anatomical analysis and its implications for environmental stress conditions. Horticulturae, 10, 308.

Hammer, Ø., Harper, D.A.T., & Ryan, P.D. (2001), PAST: Paleontological Statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 1-9.

Leszczyñska-Borys, H., Borys, M.W., & Galván, J.L. (2005), Echeveria gibbiflora d.c. a new ornamental plant from mexico. II. Aesthetic value. Acta Horticulturae, 683, 279-286

Liu, J., Zhang, Z., Li, Y., Han, J., Si, H., Mi, Y,. Wang, S., Wei, X., Yang, H., Sun, Y., & Li, Y. (2022), Effects of the vegetative propagation method on juvenility in Robinia pseudoacacia L. Forestry Research, 2, 17.

Magray, J.A., Wani, B.A., Javid, H., Islam, T., Ganie, A.H., Qadir, R.U., & Nawchoo, I.A. (2024), Vegetative propagation of phytolacca acinosa roxb. by rhizome cuttings: A step towards conservation and cultivation approach. Frontiers in Conservation Science, 5, 1386204.

Negash, L., & Bornman, C.H. (2004), Stump sprouts as sources of cutting production for the vegetative propagation of the threatened African wildolive (Olea europaea subsp. cuspidata). South African Journal of Botany, 70(1), 24-30.

Quille, P., Kacprzyk, J., O’Connell, S., & Ng, C.K.Y. (2025), Reducing fertiliser inputs: plant biostimulants as an emerging strategy to improve nutrient use efficiency. Discover Sustainability, 6, 128.

Reddy, M.C., Indu, K., Bhargavi, Ch., Rajendra, M.P., & Babu, B.H. (2022), A review on vegetative propagation and applications in forestry. Journal of Plant Development Sciences, 14(3), 265-272.

Sala, F. (1999), Magnetic fluids effect upon growth processes in plants. Journal of Magnetism and Magnetic Materials, 201(1-3), 440-442.

Severino, L.S., Lima, R.L.S., Lucena, A.M.A., Freire, M.A.O., Sampaio, L.R., Veras, R.P., Medeiros, K.A.A.L., Sofiatti, V., & Arriel, N.H.C. (2011), Propagation by stem cuttings and root system structure of Jatropha curcas. Biomass and Bioenergy, 35(7), 3160-3166.

Tan, T., Peng, Y., An, B., Gao, F., Sun, Y., Yang, C., Yang, H., & Lu, Z. (2024), An efficient propagation system through stem cuttings of a multipurpose plant-Ficus tikoua Bur. PeerJ, 12, e18768.

Tsaktsira, M., Chavale, E., Kostas, S., Pipinis, E., Tsoulpha, P., Hatzilazarou, S., Ziogou, F.-T., Nianiou-Obeidat, I., Iliev, I., Economou, A., & Scaltsoyiannes, A. (2021), Vegetative propagation and ISSR-based genetic identification of genotypes of ilex aquifolium ‘Agrifoglio Commune’. Sustainability, 13(18), 10345.

Zhang, X., Yin, J., Ma, Y., Peng, Y., Fenton, O., Wang, W., Zhang, W., & Chen, Q. (2024), Unlocking the potential of biostimulants derived from organic waste and by-product sources: Improving plant growth and tolerance to abiotic stresses in agriculture. Environmental Technology & Innovation, 34, 103571.

Downloads

Published

2025-12-18

Issue

Section

Articles